Histogram of Oriented Depth Gradients for Action Recognition
Nachwa Abou Bakr  1, *@  , James Crowley  2, *@  
1 : Laboratoire d'Informatique de Grenoble  (LIG)  -  Site web
Université Grenoble Alpes, INRIA, Institut polytechnique de Grenoble (Grenoble INP), CNRS : UMR5217
UMR 5217 - Laboratoire LIG - 38041 Grenoble cedex 9 - France Tél. : +33 (0)4 76 51 43 61 - Fax : +33 (0)4 76 51 49 85 -  France
2 : Pervasive Interaction  (INRIA Grenoble Rhône-Alpes / LIG Laboratoire d'Informatique de Grenoble)  -  Site web
CNRS : UMR5217, Institut polytechnique de Grenoble (Grenoble INP), Université Joseph Fourier - Grenoble I, INRIA, Laboratoire d'Informatique de Grenoble
Inria Grenoble - Rhône-Alpes 655 avenue de l'Europe - Montbonnot 38334 Saint Ismier Cedex -  France
* : Auteur correspondant

In this paper, we report on experiments with the use of local measures for depth motion for visual action recognition from MPEG encoded RGBD video sequences. We show that such measures can be combined with local space-time video descriptors for appearance to provide a computationally efficient method for recognition of actions.
Fisher vectors are used for encoding and concatenating a depth descriptor with existing RGB local descriptors.
We then employ a linear SVM for recognizing manipulation actions using such vectors.
We evaluate the effectiveness of such measures by comparison to the state-of-the-art using two recent datasets for action recognition in kitchen environments.


Personnes connectées : 1 Flux RSS