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Abstract
In this communication we present briefly an adaptation of
the Exposure Fusion method to a Retinex usage. Exposure
Fusion is a high dynamic range imaging technique to fuse
a bracketed exposure sequence into a high quality image.
Our proposition takes advantage of this method in the more
general context of improving the overall quality of any im-
age, turning Exposure Fusion into a new and simple con-
trast and color enhancement operator.
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1 Introduction
The dynamic range of real scenes is generally higher
than the one of our camera sensors. To capture the entire
dynamic range, photographers can take a sequence of
image with different exposure times: long times capture
information in dark parts of the scene and saturate the
brights ones, while a short exposure time captures relevant
information in the brights parts. This is called a bracketed
exposure sequence. This sequence is then merged into
a high dynamic range (HDR) image, which needs to
be remapped to the low dynamic range (LDR) of most
displays through a tone-mapping operator.

Exposure Fusion [1] was introduced by T. Mertens, J.
Kautz and F. Van Reeth in 2009 as an alternative way
of constructing a LDR image of a bracketed exposure
sequence. This method does not build an intermediate
HDR picture. In a nutshell, it directly selects for each
pixel the values, among the provided pictures, which
should be kept in the final image. As a result, the fused
image combines the best areas of the several input images.
Although similar techniques already existed [4], this
technique brought interesting and successful answers to
two crucial questions: how to detect the best pixel from
the provided set of images, and how to seamlessly merge
those pixels in the final image.

Our proposition simulates the bracketed exposure se-
quence acquisition from a single LDR image, extending

Exposure Fusion to color and contrast enhancement
methods. We will first review the original algorithm and
then explain our adaptation. The last part will show results
and compare it to the state-of-the-art Multiscale Retinex.

2 Exposure Fusion
Exposure fusion first measures the perceptual quality of
each pixel in each image of the input sequence. Three
pixel-wise metrics are used: the contrast C, saturation S
and well-exposedness E. We will denote in the following
by ij the position of the pixel in a image, by c the color
channel, and by k the position of the image in the input
sequence. The contrast metric uses the absolute value of a
discrete Laplacian filter applied to the grayscale version of
the image. Denoting by KLaplacian a Laplacian kernel, we
set

Cij,k =
∣∣∣(1
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The authors use for KLaplacian the sum of differences over
the four nearest neighbors. The saturation metric is the
standard-deviation of the pixel’s color,
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Finally, the well-exposedness metric measure how close
the pixel’s value is to the median value 0.5 using a Gauss
curve:

Eij,k =

3∏
c=1

exp− (Iij,c,k − 0.5)2

2σ2
, (3)

with σ = 0.2. To account for multiple color channels,
this measure is made on each channel separately and the
results are multiplied.

The quality measure of each pixel is finally obtained as a
product of these three metrics. By using the product, the
authors enforce their method to only keep pixels which are
acceptable for the three qualities simultaneously. To al-
low the user to choose the importance given to each quality
measure, they added a power function to each one, with
parameters ωc, ωs and ωe (by default equal to 1):

Wij,k = (Cij,k)ωc .(Sij,k)ωs .(Eij,k)ωe . (4)



For the blending process, the resulting weights need to be
normalized as

Ŵij,k =
( N∑
k′=1

Wij,k′
)−1

.Wij,k . (5)

At this point, each input image has its normalized weight
map. As the authors explain, one could directly use them
to fuse the images. But such an operation would lead to
strong seams due to the sharp variations in the weights.
They instead propose a multiscale fusion, using the method
introduced by Ogden et al. [3]. This technique builds the
Laplacian Pyramid [2] of the output image by blending
the Laplacian pyramids of the input images according to
the Gaussian pyramid of the weight maps. The fused im-
age is obtained by collapsing the constructed pyramid. We
will denote L{I} the Laplacian pyramid of the input image
I , G{W} the Gaussian pyramid of the weights, and l the
scale. The blending operation is then:

L{R}lij =

N∑
k=1

G{Ŵ}lij,k.L{I}lij,k . (6)

The algorithm 1 describes the whole process, from the
quality measurements to the multiscale fusion.

Algorithm 1 Exposure Fusion
Require: input sequence of images I; weights for saturation,

contrast and well-exposedness measures ωs, ωc, ωe

Ensure: fused image R
for each image at position k ∈ {1, 2, ..., N} in the input se-
quence do

Compute contrast metric C using eq. (1)
Compute saturation metric S using eq. (2)
Compute well-exposedness metric E using eq. (3)
Compute weight map Wk of the current image using eq. (4)

end for
Normalize weights using eq. (5)
for each image at position k ∈ {1, 2, ..., N} in the input se-
quence do

Compute Gaussian pyramid of weights G{Ŵ}k
Compute Laplacian pyramid of input images L{I}k
for each coefficient at position ij and scale l do

Update Laplacian pyramid of the output image:
L{R}lij ← L{R}lij +G{Ŵ}lij,k.L{I}lij,k

end for
end for
R← collapse Laplacian pyramid L{R}

While the sum of the weights is guaranteed for every pixel
to be equal to 1, this does not imply that the reconstructed
image belongs to the initial interval. In fact it may well
happens that saturations occur in the dark or bright part.
Avoiding them is possible by applying an affine rescaling
of the image’s dynamic to fit it to the standard interval
[0, 255]. In our experiments, the resulting image generally
presented no artifacts. The authors however present a case
where the output image suffers from a very low frequency
halo, giving an unnatural sensation (see fig. 6 of their
paper [1]).
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Figure 1: Remapping func-
tion used to generate the input
sequence, here with parameter
α = 6 and N = 4.

3 Exposure fusion from a single image
The difficulty in local tone-mapping operators is to adapt
the contrast modification to different areas and avoid un-
natural behaviors at edges such as halo or edge sharpening.
Since Exposure Fusion achieves very successfully the sim-
ilar task of selecting and seamlessly merging areas from
images with significant exposure changes, we propose to
adapt the algorithm to make it work for a single image.
The idea is to generate an input sequence simulating for
this sole image its underexposed or overexposed versions.
Used in this way, Exposure Fusion becomes a powerful
image enhancement operator. The first question we en-
countered is: how to generate the sequence? We found that
the choice of the over-or under-exposure processes is not
that critical. Indeed Exposure Fusion metrics are designed
to always select the best pixels among the available input
images. In other words, Exposure Fusion will measure
what correction, among the proposed ones, is the best for
each input pixel. It is therefore only necessary to present
a sequence which enhances the contrast at all levels of the
dynamic.

A captured bracketed image can be written as

Iij,k = f(Eij∆tk)

where ∆t is the exposure time, E the scene irradiance and
f is the overall acquisition non-linearity. Here k is the
index of the exposure time ∆tk. Writing these exposure
times as functions of a reference exposure time ∆tref of I ,
we therefore have

Iij,k = f(Eij∆trefαk). (7)

Although it is possible to recover f from the sequence of
images [8], this is impossible from a single one. The only
option is then to make a guess about the form of f and
to simulate enough bracketed images compatible with the
form of f . Most JPEG images have undergone a multi-
plicative color balance and a gamma-correction, which is a
power function. Thus, approximating f by a power func-
tion seems appropriate. Denoting by p the exponent (with
range between 1 and around 2.2), we deduce from (7) that
the input sequence can be generated by setting

Iij,k = Iij,refα
p
k .

To artificially increase the exposure time (there is no
reason to decrease it as we can’t recover saturated parts)
we therefore just have to multiply the image by factors



larger than one. We tried other possibilities: adding an
offset to the initial image (thus assuming that f was a
logarithm) or even powers of the input image (assuming
that f was an exponential). We found that using simple
multiplications produced good results (see fig. 2).

Each used multiplier generates a pair of images. Indeed,
applying a multiplier α > 1 creates saturation. In order
to prevent this loss of information, we propose two func-
tions: fdark multiplies by α and saturates the image in the
dark parts, while fbright saturates it in the bright parts. The
important parameters thus left to the user are the maximal
multiplicative factor α applied to the input image, and the
total number N of images to generate. Denoting t an in-
tensity, the remapping function are:

fdark(t, k) = max{0,
(

(
2k

N
− 1)2(α− 1) + 1

)
(t− 1) + 1}

fbright(t, k) = min{1,
(

(
2k

N
− 1)2(α− 1) + 1

)
t}

The factor (( 2k
N − 1)2(α− 1) + 1) applied to the intensity

vary between 1 and α, with shorter increments around 1
– which resembles the way cameras do, since exposure
time is generally a power of two. We drew these functions
for the various values of k (denoting the position in the
generated input sequence) in figure 1. All factors are equal
or superior to 1 to guarantee that the fused image does not
loose contrast.

The pseudo-code 2 describes the very simple steps of our
algorithm: first, the generation of the input sequence, and
then the application of Exposure Fusion.

Algorithm 2 Exposure fusion from a single image
Require: Method parameters: input image I , number of images

to generate N (even), mapping functions fdark and fbright; Ex-
posure fusion parameters: ωs, ωc, ωe

Ensure: output fused image R
for k ∈ {0, 1, 2, ..., N} do

if k < N/2 then
Îij,k ← fdark(Iij , k)

else
Îij,k ← fbright(Iij , k)

end if
end for
R ← Apply exposure fusion to sequence Î with parameters
ωs, ωc, ωe

4 Results
Our experiments indicate that this method challenges
the well known and very effective Multiscale Retinex
[5, 6, 7]. It seems indeed able to increase both the lighting
and contrast in dark areas, thus revealing information in
the shadows. Furthermore, even the bright parts of the
input image are improved. This is particularly relevant

as that Multiscale Retinex tends to compress details in
the bright areas, and generally gives grayish skies. These
observations are confirmed by figure 2. Concerning the
colors, exposure fusion from a single image shows more
saturation.

An IPOL article is under preparation. A work-
shop is already available at http://ipolcore.
ipol.im/demo/clientApp/demo.html?id=
77777444001, letting the user try the two presented
methods on his own images and explore the effect of each
parameter.

Annex
Image credit: NASA http://dragon.larc.nasa.
gov/retinex/
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Figure 2: Tone-Mapping with the “Single Image Exposure Fusion”: original (left) and tone-mapped (center). Comparison with Multiscale
Retinex on the intensity channel [7] (right)

Figure 3: Tone-Mapping with the “Single Image Exposure Fusion”: generated input sequence (top row) and the corresponding weights
(bottom row).
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