## Agrégation à poids exponentiels : Algorithmes d'échantillonnage

Luu Duy Tung<sup>1</sup>

Jalal Fadili<sup>1</sup>

Christophe Chesneau<sup>2</sup>

<sup>1</sup> Normandie Univ, ENSICAEN, UNICAEN, CNRS, GREYC, France <sup>2</sup> Normandie Univ, UNICAEN, CNRS, LMNO, France

duy-tung.luu@ensicaen.fr

jalal.fadili@ensicaen.fr

christophe.chesneau@unicaen.fr

### Résumé

Nous proposons dans cet article des algorithmes d'échantillonage de distributions dont la densité est ni lisse ni log-concave. Nos algorithmes sont basés sur la diffusion de Langevin de la densité lissée par la régularisation de Moreau-Yosida. Ces résultats sont ensuite appliqués pour établir des agrégats à poids exponentiels dans un contexte de grande dimension.

#### **Mots Clef**

Diffusion de Langevin, regularisation de Moreau-Yosida, agrégation à poids exponentiels.

#### **Abstract**

In this paper, we propose algorithms for sampling from the distributions whose density is non-smoothed nor logconcave. Our algorithms are based on the Langevin diffusion on the regularized counterpart of density by the Moreau-Yosida regularization. These results are then applied to compute the exponentially weighted aggregates for high dimensional regression.

### **Keywords**

Langevin diffusion, Moreau-Yosida smoothing, exponential weighted aggregation.

## 1 Introduction

Consider the following linear regression

$$y = X\theta_0 + \xi \tag{1}$$

where  $y \in \mathbb{R}^n$  is the response vector,  $X \in \mathbb{R}^{n \times p}$  is a deterministic design matrix, and  $\boldsymbol{\xi}$  are errors. The objective is to estimate the vector  $\boldsymbol{\theta}_0 \in \mathbb{R}^p$  from the observations in  $\boldsymbol{y}$ . Generally, the problem (1) is either under-determined or determined (i.e.,  $p \leq n$ ), but  $\boldsymbol{X}$  is ill-conditioned, and then (1) becomes ill-posed. However,  $\boldsymbol{\theta}_0$  generally verifies some notions of low-complexity. Namely, it has either a simple structure or a small intrinsic dimension. One can impose the notion of low-complexity on the estimators by considering a prior promoting it.

**Exponential weighted aggregation (EWA)** EWA consists to calculate the following expectation

$$\widehat{\boldsymbol{\theta}}_n^{\text{EWA}} = \int_{\mathbb{R}^p} \boldsymbol{\theta} \widehat{\mu}(\boldsymbol{\theta}) d\boldsymbol{\theta}, \ \widehat{\mu}(\boldsymbol{\theta}) \propto \exp\left(-V(\boldsymbol{\theta})/\beta\right), \ (2)$$

where  $\beta>0$  is called temperature parameter and

$$V(\boldsymbol{\theta}) \stackrel{\text{def}}{=} F(\boldsymbol{X}\boldsymbol{\theta}, \boldsymbol{y}) + W_{\lambda} \circ \boldsymbol{D}^{\top}(\boldsymbol{\theta}),$$

where  $F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$  is a general loss function assumed to be differentiable,  $W_{\lambda}: \mathbb{R}^q \to \mathbb{R} \cup \{+\infty\}$  is a regularizing penalty depending on a parameter  $\lambda > 0$ , and  $\mathbf{D} \in \mathbb{R}^{p \times q}$  a analysis operator.  $W_{\lambda}$  promotes some specific notion of low-complexity.

Langevin diffusion The computation of  $\widehat{\boldsymbol{\theta}}_n^{\text{EWA}}$  corresponds to an integration problem which becomes very involved to solve analytically, or even numerically in high-dimension. A classical approach is to approximate it using a Markov chain Monte-Carlo (MCMC) method which consists in sampling from  $\mu$  by constructing a Markov chain via the Langevin diffusion process, and to compute sample path averages based on the output of the Markov chain. A Langevin diffusion  $\boldsymbol{L}$  in  $\mathbb{R}^p$ ,  $p \geq 1$  is a homogeneous Markov process defined by the stochastic differential equation (SDE)

$$d\mathbf{L}(t) = \frac{1}{2}\rho(\mathbf{L}(t))dt + d\mathbf{W}(t), \ t > 0, \ \mathbf{L}(0) = \mathbf{l}_0, \ (3)$$

where  $\rho = \nabla \log \mu$ ,  $\mu$  is everywhere non-zero and suitably smooth target density function on  $\mathbb{R}^p$ , W is a p-dimensional Brownian process and  $\mathbf{l}_0 \in \mathbb{R}^p$  is the initial value. Under mild assumptions, the SDE (3) has a unique strong solution and,  $\mathbf{L}(t)$  has a stationary distribution with density  $\mu$ . This opens the door to approximating integrals  $\int_{\mathbb{R}^p} f(\theta)\mu(\theta)d\theta$ , where  $f: \mathbb{R}^p \to \mathbb{R}$ , by the average value of a Langevin diffusion, i.e.,  $\frac{1}{T}\int_0^T f(\mathbf{L}(t))dt$  for a large enough T. In practice, we cannot follow exactly the dynamic defined by the SDE (3). Instead, we must discretize it by the forward (Euler) scheme, which reads

$$L_{k+1} = L_k + \frac{\delta}{2} \rho(L_k) + \sqrt{\delta} Z_k, \ t > 0, \ L_0 = l_0,$$

where  $\delta>0$  is a sufficiently small constant discretization step-size and  $\{\boldsymbol{Z}_k\}_k$  are iid  $\sim \mathcal{N}(0,\mathbf{I}_p)$ . The average value  $\frac{1}{T}\int_0^T \boldsymbol{L}(t)dt$  can then be naturally approximated via the Riemann sum  $\delta/T\sum_{k=0}^{\lfloor T/\delta\rfloor-1}\boldsymbol{L}_k$  where  $\lfloor T/\delta\rfloor$  denotes the interger part of  $T/\delta$ . For a complete review about sampling by Langevin diffusion from smooth and log-concave densities, we refer the studies in [1]. To cope with non-smooth

densities, several works have proposed to replace  $\log \mu$  with a smoothed version (typically involving the Moreau-Yosida regularization) [2, 5, 3, 4].

# 2 Algorithm and guarantees

Our main contribution is to englarge the family of  $\mu$  covered in [2, 5, 3, 4] by relaxing the underlying conditions. Namely, in our framework,  $\mu$  is structured as  $\widehat{\mu}$  with  $W_{\lambda}$  is not necessarily differentiable nor convex. Let  $F_{\beta} = F(\boldsymbol{X}\cdot,\boldsymbol{y})/\beta$  and  $W_{\beta,\lambda} = W_{\lambda}/\beta$ . To apply the Langevin Monte-Carlo approach, we regularize  $W_{\beta,\lambda}$  by a Moreau envelope defined as

$$^{\gamma}W_{\beta,\lambda}(\boldsymbol{u}) \stackrel{\text{def}}{=} \inf_{\boldsymbol{w} \in \mathbb{R}^q} \frac{\|\boldsymbol{w} - \boldsymbol{u}\|_2^2}{2\gamma} + W_{\beta,\lambda}(\boldsymbol{w}), \ \gamma > 0.$$

Define also the corresponding proximal mapping as

$$\operatorname{prox}_{\gamma W_{\beta,\lambda}}(\boldsymbol{u}) \stackrel{\text{\tiny def}}{=} \operatorname{Argmin}_{\boldsymbol{w} \in \mathbb{R}^q} \frac{\left\|\boldsymbol{w} - \boldsymbol{u}\right\|_2^2}{2\gamma} + W_{\beta,\lambda}(\boldsymbol{w}), \ \gamma > 0.$$

To establish the algorithm, let us state some assumptions.

- **(H.1)**  $W_{\beta,\lambda}$  is proper, lsc and bounded from below.
- **(H.2)**  $\operatorname{prox}_{\gamma W_{\beta,\lambda}}$  is single valued.
- (H.3)  $\operatorname{prox}_{\gamma W_{\beta,\lambda}}$  is locally Lipschitz continuous.

(H.4) 
$$\exists K_1 > 0, \forall \boldsymbol{\theta} \in \mathbb{R}^p, \left\langle \boldsymbol{D}^{\top} \boldsymbol{\theta}, \operatorname{prox}_{\gamma W_{\beta, \lambda}} (\boldsymbol{D}^{\top} \boldsymbol{\theta}) \right\rangle \leq K(1 + \|\boldsymbol{\theta}\|_2^2).$$

(H.5) 
$$\exists K_2 > 0, \forall \boldsymbol{\theta} \in \mathbb{R}^p, \langle \boldsymbol{\theta}, \nabla F_{\beta}(\boldsymbol{\theta}) \rangle \leq K_2 (1 + \|\boldsymbol{\theta}\|_2^2).$$

A large family of  $W_{\beta,\lambda}$  satisfies (H.1)-(H.3). Indeed, one can show that the functions called prox-regular (and a fortiori convex) functions verify these assumptions. The following proposition ensures differentiability of  $W_{\beta,\lambda}$  and expresses the gradient  $\nabla^{\gamma}W_{\beta,\lambda}$  through  $\operatorname{prox}_{\gamma W_{\beta,\lambda}}$ .

**Proposition 2.1.** Assume that (H.1)-(H.2) hold. Then 
$${}^{\gamma}W_{\beta,\lambda} \in C^1(\mathbb{R}^q)$$
 with  $\nabla^{\gamma}W_{\beta,\lambda} = \frac{1}{\gamma} \Big(\mathbf{I}_q - \mathrm{prox}_{\gamma W_{\beta,\lambda}}\Big)$ .

Consider the Langevin diffusion  $oldsymbol{L} \in \mathbb{R}^p$  defined by the following SDE

$$d\mathbf{L}(t) = -\frac{1}{2}\nabla \Big(F_{\beta} + ({}^{\gamma}W_{\beta,\lambda}) \circ \mathbf{D}^{\top}\Big)(\mathbf{L}(t))dt + d\mathbf{W}(t),$$
(4)

when t > 0 and  $L(0) = l_0$ . Here W is a p-dimensional Brownian process and  $l_0 \in \mathbb{R}^p$  is the initial value.

**Proposition 2.2.** Assume that (H.1)-(H.5) hold. For every initial point L(0) such that  $\mathbb{E}\left[\left\|L(0)\right\|_2^2\right] < \infty$ , SDE (4) has a unique solution which is strongly Markovian, nonexplosive and admits an unique invariant measure  $\widehat{\mu}_{\gamma} \propto \exp\left(-\left(F_{\beta}(\boldsymbol{\theta}) + ({}^{\gamma}W_{\beta,\lambda}) \circ \boldsymbol{D}^{\top}(\boldsymbol{\theta})\right)\right)$ .

The following proposition answers the natural question on the behaviour of  $\widehat{\mu}_{\gamma} - \widehat{\mu}$  as a function of  $\gamma$ .

**Proposition 2.3.** Assume that (H.1) hold. Then  $\widehat{\mu}_{\gamma}$  converges to  $\widehat{\mu}$  in total variation as  $\gamma \to 0$ .

Inserting the identities of Lemma 2.1 into (4), we get

$$d\mathbf{L}(t) = \mathcal{A}(\mathbf{L}(t))dt + d\mathbf{W}(t), \ \mathbf{L}(0) = \mathbf{l}_0, \ t > 0.$$
 (5)

where  $\mathcal{A} = -\frac{1}{2} \Big( \nabla F_{\beta} + \gamma^{-1} \boldsymbol{D} \Big( \mathbf{I}_q - \operatorname{prox}_{\gamma W_{\beta, \lambda}} \Big) \circ \boldsymbol{D}^{\top} \Big)$ . Consider now the forward Euler discretization of (5) with step-size  $\delta > 0$ , which can be rearranged as

$$\boldsymbol{L}_{k+1} = \boldsymbol{L}_k + \delta \mathcal{A}(\boldsymbol{L}_k) + \sqrt{\delta} \boldsymbol{Z}_k, \ t > 0, \ \boldsymbol{L}_0 = \boldsymbol{l}_0. \quad (6)$$

From (6), an Euler approximate solution is defined as

$$oldsymbol{L}^{\delta}(t) \stackrel{ ext{def}}{=} oldsymbol{L}_0 + \int_0^t \mathcal{A}(\overline{oldsymbol{L}}(s))ds + \int_0^t doldsymbol{W}(s)ds,$$

where  $\overline{L}(t) = L_k$  for  $t \in [k\delta, (k+1)\delta[$ . Observe that  $L^{\delta}(k\delta) = \overline{L}(k\delta) = L_k$ , hence  $L^{\delta}(t)$  and  $\overline{L}(t)$  are continuous-time extensions to the discrete-time chain  $\{L_k\}_k$ . Mean square convergence of the pathwise approximation (6) and of its first-order moment is described below.

**Theorem 2.1.** Assume that (H.1)-(H.5) hold, and  $\mathbb{E}\left[\left\|\boldsymbol{L}(0)\right\|_{2}^{p}\right]<\infty$  for any  $p\geq 2$ . Then

$$\left\|\mathbb{E}\big[\boldsymbol{L}^{\delta}(T)\big] - \mathbb{E}\left[\boldsymbol{L}(T)\right]\right\|_2 \leq \mathbb{E}\left[\sup_{0 \leq t \leq T} \left\|\boldsymbol{L}^{\delta}(t) - \boldsymbol{L}(t)\right\|_2\right] \xrightarrow[\delta \to 0]{} 0.$$

Our algorithm has been applied in several numerical problems. Figure 1 shows an application in Inpainting using EWA with SCAD and  $\ell_{1,2}$  penalties.







FIGURE 1 – (a) : Masked image (b) : Inpainting with EWA -  $\ell_{1,2}$ . (c) Inpainting with EWA - SCAD.

### Références

- [1] A. S. Dalalyan. Theoretical guarantees for approximate sampling from a smooth and log-concave density. to appear in JRSS B 1412.7392, arXiv, 2014.
- [2] A. S. Dalalyan and A. B. Tsybakov. Sparse regression learning by aggregation and langevin monte-carlo. *J. Comput. Syst. Sci.*, 78(5):1423–1443, Sept. 2012.
- [3] A. Durmus and E. Moulines. Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm. Preprint hal-01176132, July 2015.
- [4] A. Durmus, E. Moulines, and M. Pereyra. Sampling from convex non continuously differentiable functions, when Moreau meets Langevin. hal-01267115, 2016.
- [5] M. Pereyra. Proximal markov chain monte carlo algorithms. *Statistics and Computing*, 26(4), 2016.