Agrégation a poids exponentiels : Algorithmes d’échantillonnage
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Résumé

Nous proposons dans cet article des algorithmes d’échan-
tillonage de distributions dont la densité est ni lisse ni
log-concave. Nos algorithmes sont basés sur la diffusion
de Langevin de la densité lissée par la régularisation de
Moreau-Yosida. Ces résultats sont ensuite appliqués pour
établir des agrégats a poids exponentiels dans un contexte
de grande dimension.
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Abstract

In this paper, we propose algorithms for sampling from
the distributions whose density is non-smoothed nor log-
concave. Our algorithms are based on the Langevin dif-
fusion on the regularized counterpart of density by the
Moreau-Yosida regularization. These results are then ap-
plied to compute the exponentially weighted aggregates for
high dimensional regression.
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1 Introduction

Consider the following linear regression
y=X60+¢ )

where y € R” is the response vector, X € R"*P is a
deterministic design matrix, and £ are errors. The objective
is to estimate the vector 8y € RP from the observations
in y. Generally, the problem (1) is either under-determined
or determined (i.e., p < n), but X is ill-conditioned, and
then (1) becomes ill-posed. However, 6 generally verifies
some notions of low-complexity. Namely, it has either a
simple structure or a small intrinsic dimension. One can
impose the notion of low-complexity on the estimators by
considering a prior promoting it.

Exponential weighted aggregation (EWA) EWA
consists to calculate the following expectation

oo = / 07(6)d6, 7i(68) x exp (—V(8)/5). (2)
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where 8 > 0 is called temperature parameter and
V(e) = F(X07y) =+ W)\ © DT<0)5

where F' : R™ x R™ — R is a general loss function as-
sumed to be differentiable, W : R? — R U {+o0} is a
regularizing penalty depending on a parameter A > 0, and
D € RP*4 a analysis operator. W promotes some specific
notion of low-complexity.

Langevin diffusion The computation of §SWA corres-
ponds to an integration problem which becomes very in-
volved to solve analytically, or even numerically in high-
dimension. A classical approach is to approximate it using
a Markov chain Monte-Carlo (MCMC) method which
consists in sampling from g by constructing a Markov
chain via the Langevin diffusion process, and to compute
sample path averages based on the output of the Markov
chain. A Langevin diffusion L in R?, p > 1 is a homoge-
neous Markov process defined by the stochastic differential
equation (SDE)

dL(t) = %p(L(t))dt+ AW (t), t >0, L(0) =Ly, (3)

where p = Vlogpu, i is everywhere non-zero and sui-
tably smooth target density function on R?, W is a p-
dimensional Brownian process and Iy € RP is the initial
value. Under mild assumptions, the SDE (3) has a unique
strong solution and, L(t) has a stationary distribution with
density . This opens the door to approximating integrals
Jgo [(0)1(60)d6, where f : RP? — R, by the average value

of a Langevin diffusion, i.e., = fOT F(L(t))dt for a large
enough 7. In practice, we cannot follow exactly the dyna-
mic defined by the SDE (3). Instead, we must discretize it
by the forward (Euler) scheme, which reads

)

Liyi = Ly + 5p(Li) +V0Zy, t >0, Lo =1lo,
where § > 0 is a sufficiently small constant discretization
step-size and { Z }, are iid ~ A/(0, I,). The average value
T fOT L(t)dt can then be naturally approximated via the
Riemann sum §/7T E,EZ;”*IL;C where |T/§] denotes the
interger part of 7'/§. For a complete review about sampling
by Langevin diffusion from smooth and log-concave den-
sities, we refer the studies in [1]. To cope with non-smooth



densities, several works have proposed to replace log i
with a smoothed version (typically involving the Moreau-
Yosida regularization) [2, 5, 3, 4].

2 Algorithm and guarantees

Our main contribution is to englarge the family of p co-
vered in [2, 5, 3, 4] by relaxing the underlying condi-
tions. Namely, in our framework, p is structured as [
with W), is not necessarily differentiable nor convex. Let
Fg = F(X-,y)/B and W3 » = Wy /p. To apply the Lan-
gevin Monte-Carlo approach, we regularize Wg 5 by a Mo-
reau envelope defined as

2
Wa(w) & i 12 g 0
a(u) = inf 5 T sa(w), ¥ > 0.

Define also the corresponding proximal mapping as

2
(u) i Argmin 7”/“) _ u||2

weRY

PrOXywy

To establish the algorithm, let us state some assumptions.
(H.1) Wy, is proper, Isc and bounded from below.
(H.2) prox
(H.3) prox

YW, 18 single valued.

W 18 locally Lipschitz continuous.

(H4) 3K, > 0,0 € R?, <DT0,prox7WM(DT9)> <
K(1+|0]2).
(H.5) 3K, >0,V € R?, (6, VF3(6)) < Kao(1 + ||0]|2).

A large family of Wy » satisfies (H.1)-(H.3). Indeed, one
can show that the functions called prox-regular (and a for-
tiori convex) functions verify these assumptions. The fol-
lowing proposition ensures differentiability of 1Wg  and

expresses the gradient V7 W 5 through prox, y, . .
Proposition 2.1. Assume that (H.1)-(H.2) hold. Then

TWg s € CHR?) with VI Wg \ = %(Iq — prOXwW/m)'

Consider the Langevin diffusion L € RP defined by the
following SDE

dL(t) = —%V(Fﬁ 4 ("Waa) o DT) (L(t))dt+dW (¢),

“4)
when ¢ > 0 and L(0) = ly. Here W is a p-dimensional
Brownian process and I € RP is the initial value.

Proposition 2.2. Assume that (H.1)-(H.5) hold. For every
initial point L(0) such that E [HL(O)HE} < oo, SDE (4)

has a unique solution which is strongly Markovian, non-
explosive and admits an unique invariant measure [i,

exp (= (Fs(6) + ("Wan) o DT(0))).

The following proposition answers the natural question on
the behaviour of i, — fi as a function of ~.

Proposition 2.3. Assume that (H.1) hold. Then [i,
converges to [i in total variation as v — 0.

Inserting the identities of Lemma 2.1 into (4), we get
dL(t) = A(L(t))dt + dW (t), L(0) =1g, t > 0. (5)

where A = —1 (VF;; + fy_lD(Iq — ProxX,y, A) o DT).
Consider now the forward Euler discretization of (5) with
step-size 0 > 0, which can be rearranged as

Liy1 = Ly +6A(LL) +V6Zy, t >0, Lo =1y. (6)

From (6), an Euler approximate solution is defined as
t t

L°(t) £ Lo+ / A(L(s))ds + / dW (s)ds,
0 0

where L(t) = Ly for t € [kd,(k + 1)5[. Observe
that L°(k6) = L(k§) = Ly, hence L°(t) and L(t)
are continuous-time extensions to the discrete-time chain
{ L }%- Mean square convergence of the pathwise approxi-
mation (6) and of its first-order moment is described below.

Theorem 2.1. Assume that (H.1)-(H.5) hold, and
E [HL(O)HS] < oo forany p > 2. Then

[EE)-EED]], <EB| s 20 = LOI, | 730

Our algorithm has been applied in several numerical pro-
blems. Figure 1 shows an application in Inpainting using
EWA with SCAD and ¢ 5 penalties.

FIGURE 1 - (a) : Masked image (b) : Inpainting with EWA
- {1,2. (c) Inpainting with EWA - SCAD.
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