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ABSTRACT

This paper addresses the question of the detection of small
targets (vehicles) in ortho-images. This question differs from
the general task of detecting objects in images by several as-
pects. Firstable, the vehicles to be detected are small, typi-
cally smaller than 20x20 pixels. Secondly, due to the multi-
fariousness of the landscapes of the earth several pixel struc-
tures similar to that of a vehicle might emerge (roof tops,
shadow patterns, rocks, buildings), whereas within the vehicle
class the inter-class variability is limited as they all look alike
from afar. Finally, the imbalance between the vehicles and
the rest of the picture is enormous in most cases. Specifically,
this paper is focused on the detection tasks introduced by the
VEDAI dataset [1]. This work supports an extensive study of
the problems one might face when applying deep neural net-
works with low resolution and scarce data and proposes some
solutions. One of the contributions of this paper is a network
severely outperforming the state-of-the-art while being much
simpler to implement and a lot faster than competitive ap-
proaches. We also list the limitations of this approach and
provide several new ideas to further improve our results.

Index Terms— detection,learning, aerial-imagery

1. INTRODUCTION AND RELATED WORK

Although automatic detection of objects in images is an old
problem and benchmarks have been around for a while [2],
the computer vision community only recently began to put
the focus on detecting small objects. Modern benchmarks like
[3] that favored small objects have proven to be surprisingly
challenging and to this day no approach has clearly gained
the upper-hand on the others. In spite of the progress of the
technologies behind satellite optics it is likely that aerial im-
agery pictures will always be filled with small objects with
relatively low resolution. Furthermore, as aforementioned,
the vehicles to detect occupy a few hundreds pixels on of-
ten very large images (around a million pixels) so most pix-
els/windows on such images will have to be classified as be-
longing to a sink class that we will call background. Those
very peculiar conditions explain why one cannot directly ap-

ply winning methods on [2] or [4] like [5] on such bench-
marks.

Modern pipelines for the detection of objects in images
can be roughly classified in 3 main groups. The first one
contains grid-based regression methods. The user defines a
grid on the image and regress bounding boxes on the images
based on offsets w.r.t this grid [6, 7, 8]. The second one is
region proposals based methods, with most of them consist-
ing of a cascade starting with class agnostic region proposals
[9, 10, 11] followed by a classifier [12, 13, 14]. This cat-
egory also includes the recent development that began with
[5] and that consists of learning the region proposal part to-
gether with the classification (see e.g. [15]). The last one,
which is not so popular anymore, contains sliding window
based methods [16, 17]. We argue that none of the methods
could be applied without extensive modifications to the task
of detecting small targets in large images. For the first class
of methods the grid used would have to be excessively large
with a close-knit network, which would require to work on
pooling or upsampling the final output and that goes against
the philosophy of grid-based methods, which is to be coarse
to be fast. In the second class of methods, problem specific
region proposal algorithms would have to be designed so that
they could detect small low-resolution objects with high re-
call. For instance, we think that the work we propose could
be used as a first step in such pipelines.

Vehicle detection on aerial imagery has been recently
studied in [18, 19, 20, 21, 22]. The most recent articles on
the subject are [23, 24], based on handcrafted descriptors,
and [25, 26, 27] using convolutional neural networks.[25]
also uses a convolutional neural network with a similar archi-
tecture, but does not provide any strategy to deal with class
imbalance, it uses a different and outdated cost function and
is much much slower. [26] introduces a new and large dataset
and reports good performances but the context-based method
it used is impractical in our case, furthermore, the metric used
to measure performances is much less demanding in terms of
precision of the localization.

This work concentrates on developing hard-mining strate-
gies to deal with classes with few examples and is a lot faster
than all former approaches due to the small sized network and



the fully convolutional inference and is specifically tailored
for the detection of small objects.

2. METHODOLOGY

2.1. Introduction

In contrast with all the previous detection results on VEDAI,
we do not use any sliding a window over the image to do
inference but get rid of this expensive step using fully con-
volutional networks, as proposed by [28]. In terms of archi-
tectures, we have experimented several variants around the
simple LeNet-5 architecture ([29]) . This architecture seems
indeed a good candidate for our detection task as the LeNet5
network has only 2 max-pooling layers (non-overlapping).
Consequently, when used as fully convolutional network the
resolution of the output heat maps is 4 times smaller than
the original image. In practice there is no need to upsam-
ple the heat map by unpooling with max-pooling switches or
using transposed convolutions like in ([30] or [28]), nor to
use dilated convolutions as in [31] nor even to use the shift-
and-stitch trick of [16]. One key difference of detection on
ortho-images and detection on commonly used datasets like
Ms COCO, is that, because the distance between the sen-
sor/camera and the ground is known in advance, all targets of
a same class share the same size in pixels, approximately, and
this size can be estimated accurately. Therefore there is no
need to adopt a multi-scale approach nor to regress the width
and height of the bounding boxes of the vehicles. For this
reason, we can set once and for all the size of the extracted
patches each class having a different sized associated patch.
By doing that we also set the size of the first fully connected
layer. The imbalance between the sink class and the vehi-
cle class being so overwhelming we had to use a multi-step
approach to get rid of most of the backgrounds and simplify
the classification as noticed by [27] once the vehicles and the
background are identified classification between the different
classes is more straightforward.

2.2. Training

We first extract positive patches around the targets. The neg-
ative patches used are sampled uniformly from the images
until we reach a ratio of 5 to 1 (which has been determined
by cross-validation). Too much negative samples and the im-
balance is too strong, too little and the heterogeneity of the
background class is not fully captured. A critical point that
is also investigated in section 5 is the imbalance factor ap-
plied to the cross-entropy cost. Then the network is trained
using stochastic gradient descent (SGD), with a dropout of
0.5[32] in the fully connected layers. When it reaches con-
vergence, after around 100 epochs, then we do inference on
the images on the training set in a fully convolutional fashion.
From 1064x1064 pixels image (images have been up-sampled
to 1024x1024 and padded) we get 256x256 heat maps. To

select the maximums we do traditional Non Maximum Sup-
pression (NMS). We then consider the remaining maximums
to be the result of our detection and we evaluate them on the
ground truth in this process we do not estimate orientations
for bounding boxes working with squared bounding boxes is
sufficient to get good results even with an orientation depen-
dent metric.

In the process we sample negative patches that have been
misclassified and weak true positives. In fact we experi-
mented with 4 different strategies of hard-mining results are
presented in section 5. We repeat the process multiple times.

2.3. Hard-Mining strategies

Bootstrapping offers a lot of liberties on how the hard exam-
ples are chosen. One could for instance pick a limited num-
ber of false positives per image or one could fix a threshold
and only pick a false positive if its score is superior than a
fixed threshold (0.5 for instance). There is also the question
of weak true positives whether to include them at all and if
yes from which threshold should we pick them. The previ-
ous experiments used the thresholds (0.5,0.5) while limiting
the number of examples in each image to be 25 at max. We
tested the 4 following different hard-mining variants on our
network :

• Strategy 1: the number of hard examples per image
is set to be exactly N (with N=25 in our experiments)
whatever their scores. No weak true positive are added.

• Strategy 2: Same strategy that 1 but with weak true pos-
itive examples whose scores are less than 0.5 (scores
are normalized probabilities).

• Strategy 3: We chose only hard negative with scores
superior to 0.5 and weak true positives with scores less
than 0.5

• Strategy 4: Same as strategy 3 without weak true posi-
tives.

These 4 strategies are evaluated in Section 3.

2.4. Addressing class imbalance issues

One of the issues with detection is the imbalance between the
few present vehicles (targets) on images and the large vari-
ety of backgrounds. This issue is even more present in aerial
imagery because of the relative size of full images and small
vehicles like cars. In this context, VeDAI is especially chal-
lenging as each image only contains a few vehicles. There
are many techniques to effectively fight this. Controlling ve-
hicles/background proportion in each batch, minority over-
sampling like [33], or modifying the cost itself to give more
weights to the misclassification of classes that are less present.



We chose the latter because of its simplicity. The cost func-
tion implemented is the weighted cross-entropy:

L(w) =

N∑
i=1

C ∗ti∗log(fw(xi))+(1−ti)∗log(fw(xi)) (1)

where xi is one of the N image-patches in the training set,
fw(x) is the score given by the convolutional neural network
to a patch x, ti is 1 when xi belongs to the class under test
0 otherwise, C is a scalar defined as the ratio of Negative
(background) vs Positive (vehicles) examples in the batch.

2.5. Classification study: rotation invariance, etc.

This part aims at finding the weaknesses of our approach and
further motivates a follow-up work on using this baseline net-
work as the first part of a cascade. We created numerous
classification sets using collected hard-negative samples. We
looked at every possible combination of: contrast normalizing
the patches (or not), angle normalizing the targets (meaning
all targets have the same orientation)(or not) and shifting the
patches from the targets (4 pixels apart in checkerboard dis-
tance)(or not). For simplicity we adopted the following code:
S and �S mean respectively with shifted target normalization
or without, A and �A means angle-normalized patches or all
rotations included and C and �C contrast-normalized patches
or no contrast normalization used. These different options are
experimented in Section 3

3. EXPERIMENTS

The VeDAI dataset The VeDAI dataset [1] consists of 1200
images that come in two different resolutions 512x512 and
1024x1024. Every image is available in two versions either
colored (RGB) or infrared. All experiments in the paper were
conducted on the infrared version of the 512x512 images. The
dataset is provided with 10 folds and 1340 cars in total, with
an average of around 140 cars to detect per fold. The defini-
tion of what a positive detection is pretty different from the
standard Intersection Over Union (IOU) criterion adopted by
the Pascal VOC or MS COCO. A detection is considered cor-
rect if it lies within the ellipse centered on the ground truth
and lying inside the edges of the target car (multiple hits on
the same targets are counted as False Positives). We are inter-
ested in mainly two metrics namely the mAP which is mea-
sured across all folds and the recall at low FPPI (recall for a
given rate of False Positive Per Image).

Results on VeDAI We first report general results on VeDAI
using an architecture inspired by the LeNet-5 network. On
overall, the network contains 2 convolutional layers followed
by three fully connected like layers, as detailed Table 1.

Name Type Filter Size Input Output

Stride Size Output

Conv1 convolution 5x5/1 45x45x3 41x41x96

Pool1 max-pooling 2x2/2 41x41x96 20x20x96

Conv2 convolution 5x5/1 20x20x96 16x16x192

Pool2 max-pooling 2x2/2 16x16x192 8x8x192

fc1 convolution 8x8/1 8x8x192 1x1x384

fc2 convolution 1x1/1 1x1x384 1x1x84

fc3 convolution 1x1/1 1x1x84 1x1x2

Softmax Softmax None 1x1x2 1x1x2

Table 1. Architecture of our network, inspired by LeNet-5

Fig. 1. Precision-Recall curves given by our RPN network
on the 10 folds of the VEDAI dataset. The mAP is of 0.78±
0.03.

All convolutions are VALID type convolutions (no padding)
and all fully connected layers are implemented as 1x1 convo-
lutions. In order to make the results as good as possible, we
experimented with the following parameters : (i) size of the
receptive field, (ii) amount of regularization (iii) depth of each
layer. We selected optimal parameters on a validation set. As
there is none validation set by default in VeDAI, we split the
10 folds provided with the dataset into ten subsets of equal
length and chose our parameters by training the network on 9
of them and validating on the tenth.

The selected network reaches a mAP of 77.8±3.3 (see 1)
which is a very large improvement (12%) from the previous
state of the art, on the car category. As a comparison, the
recent work of [23] reports a mAP of 69.6 ±3.4 for the same
class.

We used an L2 regularization of 0.0001 and a wide net-
works with respectively for each layer 96, 192, 384 and 84
neurones. The network was trained using classic SGD with a
fixed learning rate of 0.001.

The Table 2 lists all the published results on VeDAI and



method AP Recall@0.01FPPI
DPM [34] 60.5± 4.2 13.4± 6.8

SVM+HOG31 [34] 55.4± 2.6 7.8± 5.5

SVM+LBP [34] 51.7± 5.2 5.5± 2.2

SVM+LTP [34] 60.4± 4.0 9.3± 3.7

SVM+HOG31+LBP [34] 61.3± 3.9 8.3± 5.2

SVM Fusion AED (HOG) [35] 69.6± 3.4 20.4± 6.2

Ours 77.80 ± 3.3 31.04 ± 11

Table 2. Comparisons with related works

Strategy R1 R2 R3 R4 R5 R6

S1 0.00 0.21 0.39 0.36 0.28 0.25

S2 0.00 0.10 0.17 0.43 0.27 0.32

S3 0.00 0.35 0.34 0.31 0.25 0.29

S4 0.00 0.23 0.32 0.23 0.32 0.32

Table 3. Recall@0.01FPPI w.r.t. the number of passes for the
4 strategies, on a validation set

ours. We can see that in terms of Average Precision or re-
call the advantages of our method. [27] do not report any
detection results only classification so we cannot compare to
it directly.

Evaluation of the 4 hard-negative-mining strategies As
said before, bootstrapping offers a lot of liberties on how the
hard examples are chosen. We proposed in Section 2 four
different hard-mining strategies we are now going to evalu-
ate. Table 3 gives the Recall at 0.01 False Positive per Image
(FPPI) for different rounds of hard mining. From this table
we can make three observations: first, the best overall perfor-
mance is obtained with S2 and should be preferred. Second, if
one wants to limit the number of rounds of hard example min-
ing, he should prefer S3 which gives 0.35 after only 2 rounds.
Third, without hard mining, the performance of the network
is very low.

Compensating the translations, rotations, etc.. We experi-
mented the 3 normalization strategies given Section 2.5. As
said before, to make the evaluation of the performance faster,
we experimented these alternatives on a classification task.
For building this classification set, we used all the targets from
fold 1 and added hard negative examples.

There is 50000 examples in the training set with a ratio
of negative over positive of 70 it is 5 times more than in the
course of hard-mining passes as we had to sample only one
positive example per target present instead of 5 as we have
when we start detection training. We measure the accuracy
by which percentage of images is classified correctly (with a
fixed threshold of 0.5) but as the number of backgrounds is
70 times the number of targets, the accuracy is actually not

Config. Acc. Acc. Acc. Recall

pos. backgds at 0.001 FP

�A
�S �C 98.35 53.91 98.94 28.02

C 98.94 43.21 99.68 25.59

S �C 98.78 66.67 99.21 41.86

C 99.01 66.67 99.44 50.33

A
�S �C 99.01 82.72 99.23 63.45

C 99.10 86.42 99.27 71.68

S �C 99.33 91.77 99.43 82.79

C 99.41 92.59 99.50 86.58

Table 4. Learning variant/invariant representations. See Sec-
tion 3 for details.

very informative. It is more helpful to have also the accu-
racy on the target class patches, which verifies that the classi-
fier would not get away with classifying everything as back-
ground and still get a good accuracy. We added the recall
for 0.001 FP meaning the recall of the target classes patch
obtained for a given proportion of 0.001 false positive in the
validation set for the same reason. The results are given in
Table 4. It is also interesting to see what would the network
that was trained on perfectly centered patches do on shifted
targets (it often happens when the equivalent sliding window
step is not 1). We get 16.5 accuracy on the positive examples
(instead of 53.91) and a recall at 0.001 FPPI of 18.20 (instead
of 28.02). There is a severe degradation of the performances.
The same phenomenon is observed when we train on all ori-
entations and test on angle normalized patches. Accuracy on
positive examples drops to 52.67 (instead of 82.71). The re-
call at 0.001 FPPI is also impacted 55.8 (instead of 63.45).
Therefore this network performs much better when the targets
are centered and normalized in rotations. We ran additional
experiments to see if the angle normalization step of the cas-
cade was really necessary so we added a data-augmentation
module which rotated the patches in the current batch by a
random angle uniformly chosen between 0 and 360. The net-
work that performed poorly (53.91 accuracy on positive ex-
amples and 28.02 recall at 0.001 FPPI) gave reasonable re-
sults with 88.77 accuracy on the positive examples. So if we
can center and normalize detected results we could use this
trained classifier on top and it would better the results.

4. CONCLUSIONS

We have presented state-of-the-art results on a challenging
benchmark and insights on how to tackle detection in the dif-
ficult context of few examples learning and extreme imbal-



ance. This study cuts across the many articles using transfer
learning to avoid having to deal with training a network from
scratch. We are also confident that having found in 3 that an-
gle normalization has such a strong effect on performances
we could improve a lot on these results by using a cascade.
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Détection et Reconnaissance de véhicules faiblement résolus
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