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Résumé
La lampe à fente est un instrument essentiel pour les
soins oculaires. Elle est utilisé dans les traitements par
laser. La navigué utilise une mosaı̈que de la rétine,
notamment pour aider au diagnostic. La construc-
tion de mosaı̈ques précises est une tâche difficile. Les
spécificités de l’ensemble d’imagerie introduisent des arte-
facts d’éclairage gênants. Une autre difficulté est la dérive
accumulée. Ceux-ci non seulement dégradent la qualité de
la mosaı̈que mais peuvent également affecter le diagnostic.
Nous présentons une nouvelle méthodologie qui combine
la réduction de la dérive et la manipulation des artefacts
de réflexion dans SLIM, et améliore considérablement la
qualité des mosaı̈ques.

Mots Clef
dérive, reflet spéculaire, mouvement, rétine, mosaı̈que, fu-
sion d’image, lampe à fente

Abstract
The slit lamp is an essential instrument for eye care. It
is used in navigated laser treatment with retina mosaic-
ing to assist diagnosis. The construction of seamless and
accurate mosaics is an important and challenging task.
Specifics of the imaging set-up introduce bothersome illu-
mination artifacts. Another difficulty is accumulated reg-
istration drift. These not only degrade the quality of the
mosaic but may also affect the diagnosis. We present a new
methodology which combines drift reduction and reflection
artifacts handling and significantly improves the quality of
the mosaics in SLIM.

Keywords
drift, specular highlight, motion, retinal mosaicing, image
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1 Introduction
Retinal examination with the slit-lamp is the most impor-
tant technique dating back to the 1980-ies which remains
prevalent in clinical ophthalmology nowadays. It allows
the eye to be examined with a light beam or ‘slit’ whose
height and width can be adjusted. The slit of light, di-

rected at an appropriate angle, emphasizes the anatomic
structures of the eye, allowing close inspection. It is also
used for laser delivery in navigated panretinal photocoagu-
lation (NPRP) - the standard treatment for numerous retinal
diseases including diabetic retinopathy. Currently, NPRP
can be performed by computer guided systems which com-
bine real-time imaging, pre-operative planning and intra-
operative navigation [21, 17, 18, 31]. Because the images
captured with the slit-lamp have a narrow field of view
(FOV) visualizing only thin portions of the retina, view ex-
pansion with image mosaicing became an important part
of the slit-lamp based NPRP system developed at Quan-
telMedical, France (Fig. 1).

Obtaining a geometrically and photometrically accurate
retinal mosaic is a difficult task due to the numerous chal-
lenging conditions. When performing retinal examination
with a slit-lamp the imaging set-up is arranged such that the
axis of the observation component is nearly coaxial with
the axis of the illumination component. Both are fixed on
the moving base, controlled by the ophthalmologist. The
light beam is focused on the retina using a hand-held direct
contact lens of strong convergence. This essential require-
ment unfortunately introduces bothersome illumination ar-
tifacts that populate the image and are difficult to separate
from the retina. In addition, due to the ‘chaining’ nature
of the mosaicing algorithm of the NPRP system, alignment
errors tend to accumulate, causing images to drift in the
mosaic. Our main objective in this work is to reduce the
drift, handle illumination artifacts and obtain visually con-
sistent mosaics.

The problem of accumulated drift was addressed in a wide
variety of image registration applications [27, 14, 4, 7, 11].
The usual approach practiced by many is to perform global
Bundle Adjustment (BA). In real-time systems it has been
left as a post-processing step for a long time. However,
in the past few years a number of real-time local BA-type
refinement methods were proposed [15, 10, 6] which allow
one to achieve a similar accuracy to conventional BA while
reducing computational cost.

There also exist numerous methods for specular highlight
removal and correction in medical and non-medical appli-
cations such as [12, 1, 5, 2, 21, 25, 22, 29, 30, 9, 28, 16, 24].



(a) (b) (c)

Figure 1: Retinal image mosaicing with a slit-lamp. (a) a slit-lamp NPRP system, developed at QuantelMedical, France and
(b) sample mosaics constructed during an examination session with the slit-lamp, the FOV is shown as a rectangular region
and (c) - a typical slit-lamp image demonstrating the appearance variation of light reflection of different origins. (Please refer
to the electronic version for better visualization of all figures in this paper.)

Most of the single-image solutions are capable to correct
strong glare but they share the same problem: they gen-
erally result in noticeable artifacts when applied directly
in SLIM. Multi-image methods utilize the motion cues for
highlight localization and correction. In SLIM, due to the
specifics of the imaging set-up (see section 3.1), the appar-
ent motion of specular highlights can be noticed but unlike
in previous works, more than two consecutive observations
are required for detection. Moreover, the limited FOV does
not allow a frame to capture the highlight fully. Therefore,
the motion cues are useful but shall be engaged as soft con-
straints. Learning appearance variation from multiple im-
ages has proved to outperform simpler methods [31]. How-
ever, the inability to model the complex color and intensity
variation of the reflections associated with lens flare makes
it unsuitable for our goals in SLIM.
In this paper we propose an improvement to [21]. We ad-
dress the problem of accumulated registration drift through
the creation of long-term high precision point correspon-
dences. We associate a simple global model with local
correction and key-frame based Bundle Adjustment. We
also propose a two-stage solution addressing the problem
of strong glares as a pre-processing step in the mosaic-
ing pipeline, while correcting lens and haze at the image
blending stage. Our main contribution is a SLIM dedicated
method which handles registration drift and all types of il-
lumination artifacts, as opposed to the methods from the
state-of-the-art.

2 Methodology
2.1 Notation
• we use I to refer to the image and Latin bold to refer

to image points p,q, g, c

• we use P to refer to the conditional probability and
K is the number of components in Gaussian Mixture
Model (GMM)

• w, µ,Σ are the GMM’s parameters estimated with Ex-
pectation Maximization (EM)

• p ∈ IR2 is a vector of xy coordinates

• we use Greek chatacter τ to refer to point tracks

• frame indexing is denoted as f = 1, ..., nf , where nf
is a total number of frames

• key-frame indexing is denoted as k = 1, ..., nk, where
nk is a total number of key-frames

• image point indexing is denoted as i = 1, ..., ni,
where ni is a total number of image points

• track indexing is denoted as j = 1, ..., nj , where nj is
a total number of tracks

• we use A to note the affine transformation represented
in a matrix form and w its corresponding transforma-
tion function

• the forward warping function is denoted as ω and the
backward warping as φ respectively

2.2 Glare Removal and Retina Segmentation
Segmentation of the visible and informative retinal content
from slit lamp images is a challenging task due to illumi-
nation artifacts. The work [31] was not found to be suit-
able for effective retina segmentation in our datasets. The
concept of specular-free (SF) image widely used in the lit-
erature [25, 22, 29] is too coarse approximation. Nonethe-
less, it has been demonstrated to be effective for single-
image glare removal. Incorporating contextual information
is considered as one of the most effective approaches in
many applications as was demonstrated in [19]. Retinal
images obtained with a slit-lamp have a narrow FOV lo-
cated in the center of the image resulting in a large part
of the image containing dark pixels. This property can be
used to obtain the region of interest (ROI) to reduce the
processing load. Hence, our approach can be summarized
in the following steps:



Step 1: pre-processing. First the image is converted to
the LMS (Long, Medium, and Short light wavelengths)
color space. This is commonly used color space to estimate
the appearance of a pixel under a different illumination.
Based on the observation that the maximum fraction of the
unsaturated pixels in local patches changes smoothly we
proceed with low-pass filtering similar to [29] and obtain
ILP . We then computeCmin = min(ILP )

mean(ILP ) - the maximum
chromaticity image as a pixelwise division of the minimum
value over three components of ILP and the mean value
respectively. This computation results in a binary image,
where the most glare pixels have intensity equal to 1.

Step 2: informative pixels selection. Given the priors on
the location of the slit in the image we filter out highly im-
probable locations of the informative retinal content. For
each pixel in the image we compute a conditional proba-
bility of the retinal content occurring at this pixel given the
center of the image cI . We model this contextual constraint
with a Gaussian Mixture Model (GMM):

P (p|cI) =

K∑
i=1

wiG(p− cI ;µi,Σi) (1)

where K is the number of GMM components and
{wi, µi,Σi}, i = 1, ...,K are the GMM’s parameters es-
timated with Expectation Maximization (EM). The model
is learned offline on a set of annotated frames from dif-
ferent video sequences. Here, K was empirically tuned to
represent two Gaussian components. We apply the learned
GMM on a test frame and obtain a probability map.

Step 3: combination. Here we incorporate the positional
prior learned in the previous step to filter out uninforma-
tive areas of the image and obtain the final segmentation
of retinal content. Thus, we keep p as a retinal content if
P (p|cI) ≥ t, where t is a probability threshold which we
empirically set to 0.6. We perform logical XOR operation
with the GF image mask from Step 1 within the estimated
region. This allows us to keep only those pixels for the fi-
nal result where the GF mask or the estimated region, but
not both, contain a nonzero element at the same location.

2.3 Mosaicing with Drift Reduction
The solution to accumulated drift is to expand the span
of tracks across the images. Our methodology relies on
three main assumptions: (i) point correspondences pre-
sented in multiple views provide more constraints, (ii) a
simple global motion model associated with local correc-
tion can be used to predict the track location, this may
help to obtain tracks longer than short-inter-frames with
improved precision, (iii) using a simple global model to
initialize key-frame based local BA can be as accurate as
performing global BA while being less computationally ex-
pensive. Our algorithm consists of the following parts:

Initialization. We start by obtaining a set of key-points
{pi}

ni
i=1 detected on the first frame If=1 and defining an

initial set of tracks {τj}
nj

j=1 = {pi}
ni
i=1. We also tag the

first frame as a key-frame If=1 → Ik=1. Here and in the
following steps all the computation and processing is per-
formed on the segmented glare-free image obtained follow-
ing the method described in section 2.2. In the experimen-
tal section we assess different types of key-point detectors,
SIFT [13], the minimum eigen value algorithm (minEig)
[26] and their impact on the performance of the proposed
algorithm. We also use a uniform grid of points (UGrid)
evenly placed on the area of the visible retina to comple-
ment the evaluation.

Motion estimation. Inter-frame motion estimation with
a simple model as used in [21] seems to be robust but inac-
curate, typically up to 5 pixels [17]. We can use this simple
global model to create better inter-frame correspondences,
and then tracks. The slit-lamp system’s optics include sev-
eral parts moving independently, namely the contact lens
and the camera. This complicates the derivation of an ac-
curate, simple and physically valid transformation. We
use the affine transformation in our work as a best trade-
off [17]. When the new frame If comes we estimate the
motion to the last key-frame Af→k−1 by solving a Linear
Least Squares (LLS) problem where we minimize the sum
of squared transfer discrepancies:

min
θ

ni∑
i=1

‖ qi − w(pi; θ) ‖22 (2)

The transformation function has the form w(p; θ) where θ̃
is an estimated (6×1) vector of affine motion parameters of
the last key-frame and pi, qi are key-point correspondences
from the current and the previous frames respectively.

Prediction. We propagate the existing query tracks τj
using the Kanade-Lucas-Tomasi (KLT) algorithm [23] ob-
taining candidate tracks as:

τ ′j = KLT (τj , If−1, If ) (3)

The key-point associated with the candidate track is then
checked for zero-intensity (i.e. intensity values of all color
channels equal to zero). If true it is then rejected as a faulty
prediction because the track is considered valid only if it
belongs to the visible retina. We have chosen KLT as it is
an appearance based method which uses local search. It
is fast and robust just enough to handle changes between
consecutive frames. It copes with sudden motion better
compared to statistical approaches such as the an Extended
Kalman Filter (EKF), where the redundancy exists in time.

Track correction. We proceed with the refinement pro-
cedure to correct the position of the predicted candidates
(figure 2). We first warp the new image using the previ-
ously estimated affine transformation as:

Iωf = ω(If ,Af→k−1) (4)

We perform an exhaustive search in a 5×5 neighborhood w
around the query tracks locations on the warped image Iωf



Figure 2: Schematic illustration of track prediction and cor-
rection on a sample track τj .

to find a possible update τ̃j by minimizing a similarity met-
ric. We search on the warped image because it allows us
to find an estimate in a local area which is directly related
to the perceived misalignment. We evaluate several met-
rics in this study, namely the Sum of Squared Distances
(SSD), Normalized Cross Correlation (NCC) and Sum of
Hamming Distances (SHD). The corrected position of the
predicted track locations is computed using the previously
estimated motion, where φ is the back-warping function:

τ̄j = φ(τ̃j ,Af→k−1) (5)

Keyframe instantiation and local BA. We compute the
tracking loss L in the current frame as the percentage of
lost tracks from the last key-frame to provide the con-
dition for inclusion of new key-points and then tracks
L =

sizeof(τ∈If )100
sizeof(τ∈Ik) . This does not indicate tracking re-

initialization in case of full occlusion. It allows to assure
that sufficiently many points are tracked at all times. Thus,
if L > 50%, we detect new key-points τnewf . We then filter
out new tracks which fall in the predefined local neighbor-
hood (7 × 7 pixels) and join the two sets of tracks. This is
done to keep new tracks not too close to the existing ones
and avoid populating them with redundant locations. The
current frame is tagged as a new key-frame If → Ik+1. We
then invoke a local BA-type routine. An unknown 2D point
g is associated with each track τk,j and an affine trans-
form w(g; θ) with each key-frame. The presence/absence
of a track in a key-frame is given by an indicator variable
vk,j ∈ {0, 1}. The reprojection error to minimize is:

min
gj ,θ

nk∑
k=1

nj∑
j=1

vk,j ‖ τk,j − w(g; θ) ‖22 (6)

we solve this with matrix factorization in the LLS sense
[8]. We repeat from the Motion Estimation step for the rest
of the sequence.

2.4 Flare Correction and Blending
Localized flare patches in areas of uniform color and
brightness in non-medical images can be easily corrected
by copying parts of neighboring areas over the affected
area. The situation is more complicated when the flare af-
fects areas with lots of detail and tonal variations as reti-
nal content. Correction is generally not possible without
knowing beforehand what the affected areas should look
like in the absence of flare. This requires a sophisticated
per-pixel analysis in different views. Given a set of spa-
tially aligned images we want to detect which pixels are
likely to be pixels affected by lens flare. Once the lens flare
regions are revealed, their visibility may be corrected by
performing an adequate color mapping.

Step 1: pre-processing. Because reflection caused by
lens flare has a complicated nature it is necessary to address
the problem within an appropriate color space representa-
tion. Thus, for a given pixel on the mosaic M(q), a set of
overlapping frames are first transformed to the L*a*b color
space. Following the same reasoning as described in the
step 1 of Section 2.2, we apply an image guided filter to the
L component. Because the L component represents scene
luminance and low-pass filtering adjusts the local intensity
to its neighbors it is more likely to obtain well preserved
boundaries of areas affected by lens flare.

Step 2: flare detection from color. Because regions af-
fected by lens flare have specific colors, which are dif-
ferent from the rest of the retina, it motivates the use of
color GMMs. We learn a simple GMM similarly to [5]
offline on a set of manually annotated images where the
pre-processing from the previous step was applied:

P (l|λ) =

K∑
i=1

wiG(l;µi,Σi) (7)

with K = 3 Gaussian components. Here l is the image
pixel and λ = {wi, µi,Σi}, i = 1, ...,K are the GMM’s
parameters estimated with EM. We obtain a probability
map for every L component in the observation set of frames
on the mosaic using the trained GMMs. This indicates the
probability that a given pixel in the observation belongs to
the flared region. We use a Graph Cut algorithm [3] to
mark the pixel as ‘flare’ or ‘non flare’. As this is posed
as a binary labeling problem, the Pott’s Energy function is
sufficient:

E(I) =
∑
p∈S
|Ip − I ′p|+

∑
p,q∈N

K(p,q)T (Ip 6= Iq) (8)

where I = {Ip|p ∈ S} are the unknown ‘true’ labels over
the set of pixels S and I ′ =

{
I ′p|p ∈ S

}
are the observed

labels. The Potts interaction is specified by P (p,q), which
are the penalties for label discontinuities between adjacent
pixels. The function T is an indicator function. This is
optimally solved by a single execution of max-flow.



Step 3: blendning. We count the number of pixels be-
longing to each label and identify the majority. We take
the average luminance L of the majority as a Lt - top
luminance and the average of the rest of the pixels as a
Lb - bottom luminance. We then invoke an appropriate
mapping function. This is inspired by [20]. Thus, if the
majority is ‘flare’ pixels we apply ‘color burning’ - di-
vide the inverted Lb by the Lt, and then invert the re-
sult as Cburn = 1 − (1 − Lb)/Lt. This darkens the Lt
increasing the contrast. In the opposite case we apply
‘color dodging’ - divide the Lb by the inverted Lt such as
Cdodge = Lb/(1− Lt). This lightens the Lb depending on
the value of the Lt.

3 Experiments and Results
3.1 Dataset and Evaluation Strategy
The datasets used for evaluation were obtained from slit-
lamp examination sessions performed on 11 different pa-
tients presented with healthy and unhealthy retinas at Uni-
versity Hospital of Saint-Étienne, France. The NPRP sys-
tem developed at QuantelMedical was used. The videos
were captured with a CCD camera at 60fps and were 2-
3 minutes long. We took every 5th frame to produce im-
age sequences to simplify the evaluation routine. In reti-
nal imaging it is difficult to evaluate mosaicing methods
objectively due to the lack of ground-truth for alignment.
Here we provide an objective quantitative partial perfor-
mance evaluation of the proposed drift reduction approach
in two stages. First, the assessment of the steps of the
method which potentially have strong influence on the re-
sult evaluated. This is followed by a comparison of the
best performing combination to [21]. The proposed glare
removal and retina segmentation were evaluated on a set
of 270 manually annotated image frames sampled from the
set of videos. This was to ensure the coverage of patient-
specific and lens-specific specular highlight variation. The
images were annotated with binary masks to separately as-
sess the performance of glare removal and retina segmen-
tation. The proposed blending technique for lens flare cor-
rection was rated on a sets of geometrically aligned video
frames obtained by our mosaicing method described in sec-
tion 2.3. Further details along with experimental results are
provided in the following sections.

3.2 Are We Reducing Drift?
Long-term tracks is a fundamental part of BA-type refine-
ment. The longer the track are , the better. We assessed the
length of the tracks with and without the correction step
of our method. To evaluate this we computed the aver-
age length of the tracks across different subsets of frames
which were established each time a new key-frame was
defined. Experiments have shown that tracking initialized
with a UGrid and the SHD based track correction scheme
provides long, consistent tracks. This gives us a solid
base for BA initialization. We compare the method imple-
mented with and without local BA to the baseline method

(a) (b)

(c) (d)

(e) (f)

Figure 3: Examples of drift reduction results. First column
- originals, second column - corrected versions.

[21]. We use a Loop Closure Error (LCE) metric [17] for
this purpose. The metric shows how the composition of es-
timated transformations affects the global registration and
accumulated drift. The idea is to initialize a uniform grid
of points g1, ..., gnl

at the first frame of the sequence and
use the set of pairwise estimated transformations applied
sequentially to transfer the grid through the sequence. The
metric computes the discrepancy between the initial and
resulting sets of points:

ξLCE =

√√√√1

l

nl∑
i=1

‖ gi − ζ ‖22 (9)

where ζ = w(...(w(g, θ1,2))..., θi,1). The comparison of
our method and [21] are shown in table 1. The results show
that the proposed method outperforms the baseline method.
A significant improvement can be observed on the version
of the proposed method where the local BA step was used.

dataset#1 dataset#2 dataset#3 dataset#4
proposed (1) 30.43 21.75 48.02 49.12
proposed (2) 11.36 5.48 32.16 38.56
baseline [21] 34.18 28.64 48.15 50.72

Table 1: LCE across datasets. Proposed (1) - proposed
method with UGrid based initialization and SHD based lo-
cal correction. Proposed (2) is the proposed (1) + local BA.

A more consistent mosaicing result was achieved in fig-
ure 3. The vessel misalignment present in 3a was corrected
and the vessel remains continuous in 3b. The blurred and
duplicated vessels in 3c, 3e were also corrected and visual
quality has been improved in 3d and 3f respectively.



DSC = 0.68 DSC = 0.17 DSC = 0.79

(a) GT

DSC = 0.73

(c) [22]

DSC = 0.45

(d) [29]

DSC = 0.93

(e) Proposed

Figure 4: Glare removal results.

3.3 Is Illumination Handling Effective?
We start with the comparison of our glare removal tech-
nique with the existing methods [22, 29]. We manually an-
notated selected datasets by drawing the contour around re-
gions obscured by highly saturated pixels. In simple cases,
where the patient appeared to be less photosensitive and
the image acquisition was not polluted by mixture of dif-
ferent degrees of reflections the glared region boundaries
were easy to locate. Because most of the time it is diffi-
cult to observe a clear boundary between a glared region
and the surrounding distorted areas, we opted for a mid-
dleground. The results for such two cases are shown in
figure. 4. We computed the Dice Similarity Coefficient
(DSC). The higher the value the more similar the algo-
rithm’s output to the reference mask. For the simple case
(figure 4(first row)) all the methods perform well while in
the difficult case (figure 4(second row)) only the proposed
method provides acceptable results.
We then combine the GF image with the spatial probability
map to obtain the visible retinal content. The experimental
results of our method compared to the simple thresholding
technique used in [18] and the ML-based approach [31] as
shown in figure 5. Here we also compute statistical mea-
sures for every output and average it over results on 270
annotated samples as shown in table. 2. One can see that
our method provides higher values indicating better perfor-
mance.

Precision Accuracy Specificity Sensitivity
Method [18] 0.30 0.70 0.58 0.86
Method [31] 0.90 0.92 0.94 0.89
Proposed 0.92 0.95 0.97 0.90

Table 2: Retinal content segmentation performance.

DSC = 0.37 DSC = 0.88 DSC = 0.96

(a) GT

DSC = 0.86

(b) [18]

DSC = 0.91

(c) [31]

DSC = 0.94

(d) Proposed

Figure 5: Comparative results of retina segmentation.

The most traditional way to evaluate the global photomet-
ric quality of slit lamp image mosaics is still based on the
visual assessment of ophthalmologists. Even though the
experts’ opinion is a good reference it is a subjective eval-
uation which may differ between experts and may prevent
the mosaic from being used. Here we propose a new quan-
titative evaluation of the global photometric quality. We
propose to use a Blending Consistency Measure (BCM).
It assesses the quality of the blending by computing the
standard deviation of a pixel’s intensity in the transformed
image I(q) from a set of corresponding locations in the
mosaic Mi, i = 1, 2, ..., n as:

BCM =

√√√√ 1

n− 1

n∑
i=1

| I(q)− µ |2

where µ =
1

n

n∑
i=1

Mi

(10)

The results shown in figure. 6 (see next page) demonstrate
one of the mosaics for visual assessment. We take the
mosaicing result obtained by the modified version of the
method in [18] where we removed the illumination correc-
tion (figure 6(a)). We then compute BCM for this uncor-
rected mosaic and the results obtained with the inclusion
of the correction techniques from existing works in SLIM
(figures 6(b), (c)) and the proposed method (figure 6(d)).
The computed metric spans the range [0;255]. We show
the computed results represented as a percentage value.
The smaller the value, the better the blending consistency.
As can be seen, the proposed method improves the global
photometric quality of the mosaic and outperforms related
works.



(a) no correction BCM = 63% (b) [18] BCM = 51% (c) [31] BCM = 38% (d) Proposed BCM = 23%

Figure 6: Comparison of mosaics constructed with the proposed method and the state-of-the-art.

4 Conclusion
In this paper we showed how to handle specular highlights
of different degrees in slit lamp image mosaicing and re-
duce the mosaicing drift. To this end we studied several
specular highlight removal and correction approaches pro-
posed in the medical and non-medical domains and de-
signed our own solution specifically adapted to our task.
Finally, we improved previous work by proposing a fast
single-image technique to remove glares and segment the
visible retina using the concept of specular-free image and
contextual information. Secondly, we incorporate the no-
tion of the type of specular highlight and motion cue for in-
telligent image blending. Our experimental results showed
that the proposed methodology exhibits a good efficiency,
significantly outperforming the state-of-the-art in SLIM.
We have also presented a method for drift reduction which
we validated using a simple global motion model that can
efficiently produce long-term tracks with better precision
for long video sequences. We also demonstrated that using
a grid of points distributed uniformly over the visible part
of the retina generally provides a better initialization for
tracking. We have proposed a new local refinement pro-
cedure which can be applied not only for mosaicing slit-
lamp images but also within the scope of other applications
such as object tracking in the non-medical domain. Our
methodology is planned to be extended and integrated into
the NPRP prototype developed at QuantelMedical.
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